빅데이터/Kafka

Kafka Producer JMX exporter 사용하기

AndersonChoi 2022. 4. 19. 17:40

이 글은 오픈소스 아파치 카프카 공식 자바 라이브러리를 사용하여 개발할 때 JMX exporter를 사용하여 producer의 지표를 수집하기 위한 글입니다.

 

1) KafkaProducer 애플리케이션 개발

build.gradle 코드

plugins {
    id 'java'
}

group 'com.example'
version '1.0'

repositories {
    mavenCentral()
}

dependencies {
    compile 'org.apache.kafka:kafka-clients:2.5.0'
    compile  'org.slf4j:slf4j-simple:1.7.30'
}

task uberJar(type: Jar) {
    from sourceSets.main.output
    dependsOn configurations.runtimeClasspath
    from {
        configurations.runtimeClasspath.findAll { it.name.endsWith('jar') }.collect { zipTree(it) }
    }
    manifest {
        attributes "Main-Class": "com.example.SimpleProducer"
    }
}

 

SimpleProducer.java 코드

package com.example;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Properties;

public class SimpleProducer {
    private final static Logger logger = LoggerFactory.getLogger(SimpleProducer.class);
    private final static String TOPIC_NAME = "test-log";
    private final static String BOOTSTRAP_SERVERS = "localhost:9092";

    public static void main(String[] args) throws Exception{

        Properties configs = new Properties();
        configs.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, BOOTSTRAP_SERVERS);
        configs.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        configs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());

        KafkaProducer<String, String> producer = new KafkaProducer<>(configs);

        int i=0;
        for(;i<100000;i++){
            String messageValue = "{\"message\":\"test\"}";
            ProducerRecord<String, String> record = new ProducerRecord<>(TOPIC_NAME, messageValue);
            producer.send(record);
            Thread.sleep(100);
        }
        producer.flush();
        producer.close();
    }
}

2) 빌드

uberJar를 통해 해당 코드를 빌드를 수행하면 /build/libs 디렉토리에 실행가능한 java jar파일이 생성됩니다.

$ ls build/libs                                                                                                                                                                         130 ↵
simple-kafka-producer-1.0.jar

3) JMX를 위한 jar파일과 yaml 준비

자바 애플리케이션에서 jmx 데이터를 뽑아내기 위해서 다양한 방법이 있는는데, 프로메테우스를 통해 데이터를 수집하기 위해서 jmx_prometheus_javaagent-0.16.1.jar를 사용하면 http 엔드포인트를 통해 데이터를 수집할 수 있습니다.

jmx_prometheus_javaagent-0.16.1.jar는 https://github.com/prometheus/jmx_exporter/releases 에서 다운로드 할 수 있습니다.

 

그리고 두번째로 필요한 것은 jmx에 대한 정의가 담긴 yaml입니다. 

 

producer.yaml

lowercaseOutputName: true
rules:

  #kafka.connect:type=app-info,client-id="{clientid}"
  #kafka.consumer:type=app-info,client-id="{clientid}"
  #kafka.producer:type=app-info,client-id="{clientid}"
  - pattern: 'kafka.(.+)<type=app-info, client-id=(.+)><>start-time-ms'
    name: kafka_$1_start_time_seconds
    labels:
      clientId: "$2"
    help: "Kafka $1 JMX metric start time seconds"
    type: GAUGE
    valueFactor: 0.001 
  - pattern: 'kafka.(.+)<type=app-info, client-id=(.+)><>(commit-id|version): (.+)'
    name: kafka_$1_$3_info
    value: 1
    labels:
      clientId: "$2"
      $3: "$4"
    help: "Kafka $1 JMX metric info version and commit-id"
    type: GAUGE

  #kafka.producer:type=producer-topic-metrics,client-id="{clientid}",topic="{topic}"", partition="{partition}"
  #kafka.consumer:type=consumer-fetch-manager-metrics,client-id="{clientid}",topic="{topic}"", partition="{partition}"
  - pattern: kafka.(.+)<type=(.+)-metrics, client-id=(.+), topic=(.+), partition=(.+)><>(.+-total|compression-rate|.+-avg|.+-replica|.+-lag|.+-lead)
    name: kafka_$2_$6
    labels:
      clientId: "$3"
      topic: "$4"
      partition: "$5"
    help: "Kafka $1 JMX metric type $2"
    type: GAUGE

  #kafka.producer:type=producer-topic-metrics,client-id="{clientid}",topic="{topic}"
  #kafka.consumer:type=consumer-fetch-manager-metrics,client-id="{clientid}",topic="{topic}"", partition="{partition}"
  - pattern: kafka.(.+)<type=(.+)-metrics, client-id=(.+), topic=(.+)><>(.+-total|compression-rate|.+-avg)
    name: kafka_$2_$5
    labels:
      clientId: "$3"
      topic: "$4"
    help: "Kafka $1 JMX metric type $2"
    type: GAUGE

  #kafka.connect:type=connect-node-metrics,client-id="{clientid}",node-id="{nodeid}"
  #kafka.consumer:type=consumer-node-metrics,client-id=consumer-1,node-id="{nodeid}"
  - pattern: kafka.(.+)<type=(.+)-metrics, client-id=(.+), node-id=(.+)><>(.+-total|.+-avg)
    name: kafka_$2_$5
    labels:
      clientId: "$3"
      nodeId: "$4"
    help: "Kafka $1 JMX metric type $2"
    type: UNTYPED

  #kafka.connect:type=kafka-metrics-count,client-id="{clientid}"
  #kafka.consumer:type=consumer-fetch-manager-metrics,client-id="{clientid}"
  #kafka.consumer:type=consumer-coordinator-metrics,client-id="{clientid}"
  #kafka.consumer:type=consumer-metrics,client-id="{clientid}"
  - pattern: kafka.(.+)<type=(.+)-metrics, client-id=(.*)><>(.+-total|.+-avg|.+-bytes|.+-count|.+-rate|.+-ratio|.+-age|.+-flight|.+-threads|.+-connectors|.+-tasks|.+-ago)
    name: kafka_$2_$4
    labels:
      clientId: "$3"
    help: "Kafka $1 JMX metric type $2"
    type: GAUGE

  #kafka.connect:type=connector-task-metrics,connector="{connector}",task="{task}<> status"
  - pattern: 'kafka.connect<type=connector-task-metrics, connector=(.+), task=(.+)><>status: ([a-z-]+)'
    name: kafka_connect_connector_status
    value: 1
    labels:
      connector: "$1"
      task: "$2"
      status: "$3"
    help: "Kafka Connect JMX Connector status"
    type: GAUGE

  #kafka.connect:type=task-error-metrics,connector="{connector}",task="{task}"
  #kafka.connect:type=source-task-metrics,connector="{connector}",task="{task}"
  #kafka.connect:type=sink-task-metrics,connector="{connector}",task="{task}"
  #kafka.connect:type=connector-task-metrics,connector="{connector}",task="{task}"
  - pattern: kafka.connect<type=(.+)-metrics, connector=(.+), task=(.+)><>(.+-total|.+-count|.+-ms|.+-ratio|.+-avg|.+-failures|.+-requests|.+-timestamp|.+-logged|.+-errors|.+-retries|.+-skipped)
    name: kafka_connect_$1_$4
    labels:
      connector: "$2"
      task: "$3"
    help: "Kafka Connect JMX metric type $1"
    type: GAUGE

  #kafka.connect:type=connector-metrics,connector="{connector}"
  #kafka.connect:type=connect-worker-metrics,connector="{connector}"
  - pattern: kafka.connect<type=connect-worker-metrics, connector=(.+)><>([a-z-]+)
    name: kafka_connect_worker_$2
    labels:
      connector: "$1"
    help: "Kafka Connect JMX metric $1"
    type: GAUGE

  #kafka.connect:type=connect-worker-metrics
  - pattern: kafka.connect<type=connect-worker-metrics><>([a-z-]+)
    name: kafka_connect_worker_$1
    help: "Kafka Connect JMX metric worker"
    type: GAUGE

  #kafka.connect:type=connect-worker-rebalance-metrics
  - pattern: kafka.connect<type=connect-worker-rebalance-metrics><>([a-z-]+)
    name: kafka_connect_worker_rebalance_$1
    help: "Kafka Connect JMX metric rebalance information"
    type: GAUGE

 

상기 2개 파일을 특정 경로에 저장합니다.

4) 실행

javaagent를 통해 jar파일과 yaml파일을 참조하도록 하고 jar파일을 실행합니다. 

$ java -javaagent:/Users/dvwy/Desktop/jmx_prometheus_javaagent-0.16.1.jar=9400:/Users/dvwy/Desktop/producer.yaml -jar simple-kafka-producer-1.0.jar

5) jmx 데이터 확인

localhost:9400 엔드포인트로 접근하면 kafka producer 애플리케이션에서 jmx 데이터를 노출시키고 있는 것을 확인할 수 있습니다.

반응형